ASYMPTOTIC NOTATION AND ARRAYS

BY
MRS. B. GOMATHI
ASSISTANT PROFESSOR

ASYMPTOTIC NOTATIONS

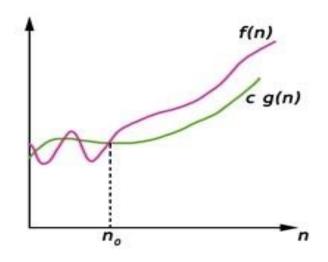
- Asymptotic notations are used to represent the complexities of algorithms for asymptotic analysis.
- These notations are mathematical tools to represent the complexities.
- There are three notations that are commonly used.

Big Oh Notation

Big Omega Notation

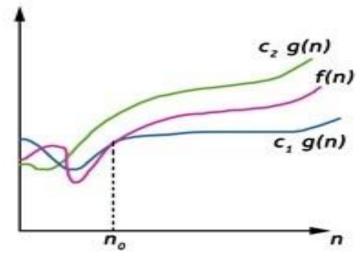
Big Theta Notation

BIG OH NOTATION


• Big-Oh (O) notation gives an upper bound for a function f(n) to within a constant factor.

- We write f(n) = O(g(n)), If there are positive constants n0 and c such that, to the right of n0 the f(n) always lies on or below c*g(n).
- o $O(g(n)) = \{ f(n) : \text{There exist positive constant c and no such that } 0 \le f(n) \le c g(n), \text{ for all } n \ge n0 \}$

BIG OMEGA NOTATION


• Big-Omega (Ω) notation gives a lower bound for a function f(n) to within a constant factor.

- We write $f(n) = \Omega(g(n))$, If there are positive constants n0 and c such that, to the right of n0 the f(n) always lies on or above c*g(n).
- $Ω(g(n)) = { f(n) : There exist positive constant c and n0 such that 0 ≤ c g(n) ≤ f(n), for all n ≥ n0}$

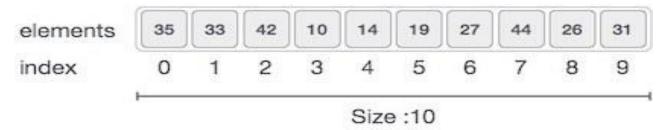
BIG THETA NOTATION

• Big-Theta(Θ) notation gives bound for a function f(n) to within a constant factor.

- We write $f(n) = \Theta(g(n))$, If there are positive constants n0 and c1 and c2 such that, to the right of n0 the f(n) always lies between c1*g(n) and c2*g(n) inclusive.
- $\Theta(g(n)) = \{f(n) : \text{There exist positive constant } c1, c2 \text{ and } n0 \text{ such that } 0 \le c1 \text{ } g(n) \le f(n) \le c2 \text{ } g(n), \text{ for all } n \ge n0 \}$

ARRAYS

- Array is a container which can hold a fix number of items and these items should be of the same type.
- Most of the data structures make use of arrays to implement their algorithms.
- **Element** Each item stored in an array is called an element.
- **Index** Each location of an element in an array has a numerical index, which is used to identify the element.


ARRAY REPRESENTATION

• Arrays can be declared in various ways in different languages. For illustration, let's take C array declaration.

```
Name Elements
int array [10] = { 35, 33, 42, 10, 14, 19, 27, 44, 26, 31 }

Type Size
```

• Arrays can be declared in various ways in different languages. For illustration, let's take C array declaration.

- As per the above illustration, following are the important points to be considered.
- Index starts with 0.

BASIC OPERATIONS

Following are the basic operations supported by an array.

- Traverse print all the array elements one by one.
- **Insertion** Adds an element at the given index.
- **Deletion** Deletes an element at the given index.
- Search − Searches an element using the given index or by the value.
- **Update** Updates an element at the given index.