ALGEBRAIC STRUCTURE

By

Ms. K. ALAMELU

Assistant Professor, Department of Mathematics, Nazareth College of Arts and Science.

Algebraic Structure

An **algebraic structure** consists of a set A, a collection of binary operations on A and a finite set of identities, known as axioms, that these operations must satisfy.

- 1. Examples of algebraic structures with a single underlying set include groups, rings, fields, and lattices.
- 2. Examples of algebraic structures with two underlying sets include vector spaces, modules, and algebras.
- 3. In particular we have the set of all integers denoted by Z under binary operation'+" is an algebraic structure, Similarly the set of all rational numbers, Q under binary operation 'x' is am algebraic structure.

Basic Definition:

- 1. Union: The union of two sets A and B written as AUB, $\{x/x \in A \text{ or } x \in B\}$
- 2. **Intersection:** The intersection of two sets A and B written as $A \cap B$, $\{x/x \in A \text{ and } x \in B\}$

3. Disjoint set:

Two sets are said to be disjoint if their intersection is empty i.e., the null set.

Example: If A is a positive integer and B is a negative integer then the intersection of A and B is empty set

Equivalence Relations:

The binary relation on A is said to be an equivalence relation on A for all a,b,c in A

- i) a \sim a is called reflexive
- ii) $a \sim b$ and $b \sim a$ is called symmetry
- iii) $a \sim b$ and $b \sim c$ then $a \sim c$ is called transitivity.

GROUP:

A group is a set, G, together with an operation that combines any two elements a and b to form another element, denoted by $a \cdot b$ or ab and satisfies the following axioms.

1. Closure

For all a, b in G, the result of the operation, $a \cdot b$, is also in G.

2. Associativity

For all a, b and c in G, $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.

3. Identity element

There exists an element e in G such that, for every element a in G, the equation $e \cdot a = a \cdot e = a$ holds. Such an element is unique and thus one speaks of *the* identity element.

4. Inverse element

For each a in G, there exists an element b in G, commonly denoted a^{-1} (or -a, if the operation is denoted "+"), such that $a \cdot b = b \cdot a = e$, where e is the identity element.

Example:

The set of integers is a group

 $\{..., -4, -3, -2, -1, 0, 1, 2, 3, 4, ...\}$ under binary operation addition.

- Closure: For any two integers a and b, the sum a + b is also an integer. That is, addition of integers always yields an integer. It satisfies closure property.
- Associative: For all integers a, b and c, (a + b) + c = a + (b + c). It satisfies a property known as associativity.
- **Identity**: If a is any integer, then 0 + a = a + 0 = a. Zero is called the *identity element* of addition because adding it to any integer gives the same integer.
- •Inverse: For every integer a, there is an integer -a such that a -a = -a + a = 0. The integer -a is called the *inverse element* of the integer a

Therefore The integers, together with the operation +, forms a group.

Finite Group: A group is said to be finite if contains finite number of elements.

Infinite Group: A group is said to be infinite if contains infinite number of elements.

Example:

- 1. The set $S = \{1,-1\}$ is a finite group under binary operation multiplication
- 2. The set of all integers is a infinite group under the binary operation addition

Order of the group:

The number of elements in a group is called as the order of the group.

Example: The set $A = \{1,-1\}$ is a group under multiplication and the order is 2.

Trivial group: A group that contains only one element is called as Trivial group.

Example: The set $B = \{0\}$ is a trivial group under binary operation addition.

Abelian Group:

A group (G,*) is said to be abelian group if a*b = b*a for all a, b ϵ G.

Binary operation : Let S be a non empty set then an operation '.' is said to be binary operation on S. If '.' is function from binary operation if a . b ϵ S for all a , b ϵ S.

Example: Using addition and multiplication or binary operation

- i) Z, the set of all integers
- Ii) N. the set of all natural numbers $\{1,2,3,4,5,\ldots\}$
- ii) Q, set of all rational numbers $\{-\infty \ to \ \infty\}$ p/q if q not equal to 0.

Semi group

A semigroup is an algebraic structure consisting of a set together with an associative binary operation.

The binary operation of a semigroup is most often denoted multiplicatively: $x \cdot y$ or simply $x \cdot y$

Associativity is formally expressed as

 $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ for all x, y and z in the semigroup.

Sub group: A subset H of a group G is called a subgroups of G if

- i) whenever a ϵ H, b ϵ H. The product ab ϵ H
- ii) $e \in H$
- iii) For each a ϵ H its inverse a^{-1} in G also belongs to H.

A non empty subset H of a group G is called a subgroup of G if H itself form a group with respect to the binary operation defined in G.

Example: The group of integer under addition forms a subgroup of G.

Group

A group is a set, G, together with an operation that combines any two elements a and b to form another element, denoted by $a \cdot b$ or ab and satisfies the following axioms.

1. Closure

For all a, b in G, the result of the operation, $a \cdot b$, is also in G.

2. Associativity

For all a, b and c in G, $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.

3. Identity element

There exists an element e in G such that, for every element a in G, the equation $e \cdot a = a \cdot e = a$ holds. Such an element is unique and thus one speaks of *the* identity element.

4. Inverse element

For each a in G, there exists an element b in G, commonly denoted a^{-1} (or -a, if the operation is denoted "+"), such that $a \cdot b = b \cdot a = e$, where e is the identity element.

Cancellation Law

Let G be a group and a, b, c elements of G. Then ab=ac implies b=c (left cancellation law), Similarly ba = ca implies b=c (Right cancellation law)

Proof: Consider the relation

ab=ac

$$a^{-1}(ab) = a^{-1}(ac)$$

By associative

$$(a^{-1}a)b = (a^{-1}a)c$$

eb=ec

b=c (Left cancellation law)

ii)

ba =ca

Multiply by a-1 on both sides

$$(ba)a^{-1} = (ca)a^{-1}$$

$$b(aa^{-1}) = c(aa^{-1})$$

be=ce

b=c(right cancellation law)

Theorem:2

Let G be a group and a,b elements of G then the equations ax=b an dya=b have unique solution in G.

Proof:

Consider the equation

ax=b

Multiply by a⁻¹ on both sides

 $a^{-1(ax)} = a^{-1}b$

 $(\mathbf{a}^{-1}\mathbf{a})\mathbf{x} = \mathbf{a}^{-1}\mathbf{b}$

 $\mathbf{e}\mathbf{x} = \mathbf{a}^{-1}\mathbf{b}$

 $\mathbf{x} = \mathbf{a}^{-1}\mathbf{b}$

now ya = b

Multiply by a-1 on both sides

 $(ya) a^{-1} = b a^{-1}$

 $y(a a^{-1}) = b a^{-1}$

 $y = b a^{-1}$

Therefore x and y exists

To prove uniqueness:

Let x_1 and x_2 be two solutions of ax = b for x

Then $ax_1 = b$ for x_1 and $ax_2 = ax_2$

 $X_1=x_2$ (left cancellation law)

Let y_1 and y_2 be two cancellation of $y_2 = b$ for $y_2 = b$ and $y_2 = b$

 $y_1a = y_2a$

 $y_1 = y_2$ (Right cancellation law)

Hence the equations ax=b and ya = b have unique solution of G.

Cyclic group

- If a group G contains an element 'a' such that every element of G is of the form ' $a^{k'}$ for some integer k we say that G is a cyclic group and that a is called as generator.
- If G is a group under addition then G is called Cyclic if there exists an element 'a' in G such that every element of G is of the form ka for some integer k.
- There may be more than one generator in a cyclic group.
- If G is a cyclic group generator by a then we write G = (a)
- Example: Consider the group $G = \{1,-1,i,-i\}$ under multiplication generator are i and -i.

Co sets

Let H be a subgroup of a group G let 'a' be an arbitrary element of G then there a H = $\{ah/h \in H\}$ is called a left co sets of H in G.

Any set of the type $Ha = \{ha/h \in H\}$ is called a right co set of H in G.

Index of H in G

If H is a subgroup of a group G, then the number of disjoint left co set (right) of H in G is called the index of H in G and is denoted by [G:H]