NAZARETH COLLEGE OF ARTS AND SCIENCE

Affiliated to University of Madras Re-accredited by NAAC with B Grade DEPARTMENT OF MATHEMATICS

Academic Year: 2020 – 2021

Semester: Odd

Subject Name: Dynamics

Topic Name: Kinematics

Name of the Faculty: D.Femila Jayaseeli

INTRODUCTION

Mechanics is the science which deals with the effects of forces on material bodies. Under the influence of force, a body may be in motion or in rest.

Dynamics is the science which deals with the motion of particles or bodies under the influence of forces.

Kinematics is the aspect of dynamics which deals with the motion, without reference to the forces producing it.

Statics is the science which deals with the conditions for lack of motion, under given forces.

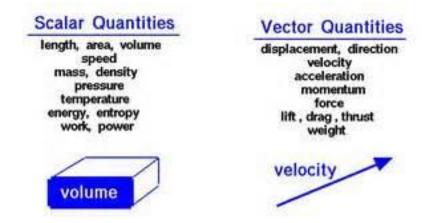
Units

The fundamental quantities in mechanics are length, time and mass. There units are metre(m.), second(sec.) and kilogram(kg.)

Vector Quantities

Physical quantities, which have magnitudes and directions are said to be vector quantities. It is denoted by vector.

Examples:


Displacement, Velocity, Acceleration and Force.

Scalar Quantities

Quantities which have only magnitudes, are scalar quantities. It is denoted by scalar.

Examples:

Length, mass, density, speed, work and energy.

Vector

The physical quantities in mechanics are vectors. It is denoted by cross.

Scalar

It is denoted by dot.

1.1 BASIC UNITS

The fundamental quantities in mechanics are length, time and mass. The following three are important systems of units

- ☐ The metre—kilogram—second system(M.K.S system)
- ☐ The centimetre-gram-second system(C.G.S system)
- ☐ The foot-pound-second system(F.P.S system)

Mass and its units

The two bodies which cause equal expansions in a place, also cause equal expansions in other places. Two such bodies seem to have something in common. This property is called the mass of the bodies.

In other words, these bodies are said to have the same mass.

The units of mass are

- Kilogram
- Pound

Kilogram: The M.K.S unit of mass is the mass of a piece of metal, arbitrarily chosen and preserved in Paris. This unit is called a kilogram.

Units

Pound: The F.P.S unit of mass is the mass of a piece of metal preserved in London. This unit is called a pound.

Quantity	M.K.S units	C.G.S units	F.P.S units
Length	Metre (m.)	cm.	Foot (ft.)
Time	Second (sec.)	sec.	Second (sec.)
Mass	Kilogram (kg.)	gm.	Pound (lb)

1.2 VELOCITY

Displacement:

When a particle moves from a point to another point, the particle is said to undergo a displacement. In other words, displacement is just a change of displacement.

Velocity

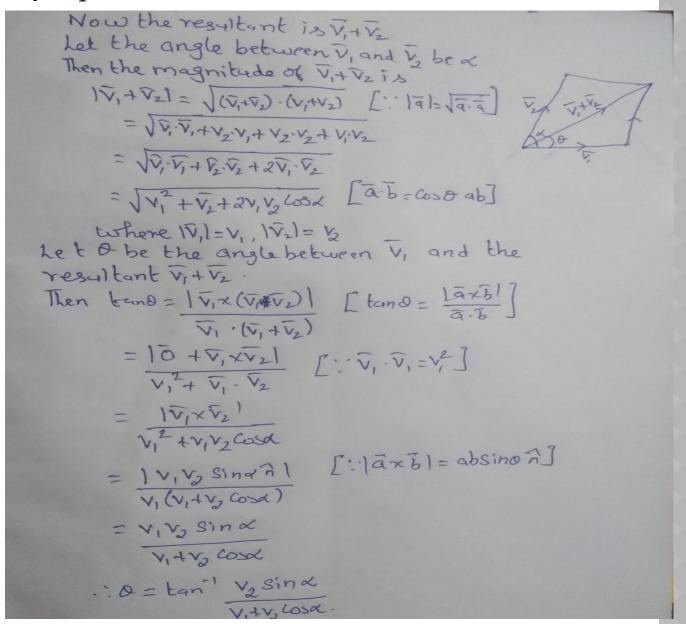
The rate of displacement, that is the rate of change of position is called the velocity of the particle. Velocity is denoted by

Acceleration

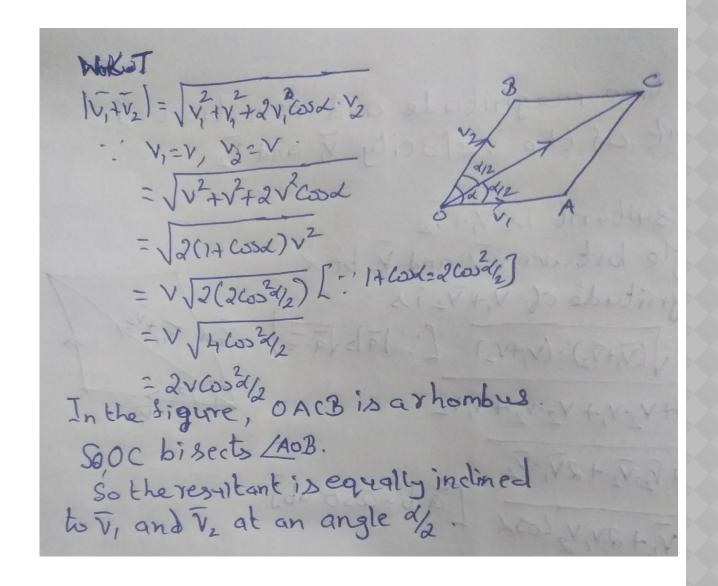
The rate of change of velocity of a particle is define as its acceleration. $\vec{f} = \frac{d}{dt}(\vec{v}) = \frac{d^2 \vec{r}}{d^2 t}$

Speed

The magnitude of velocity, namely , is cal speed. Speed is a scalar. In other words the speed is a particle is the rate at which it describes the path.


Resultant Velocity

If a particle has two velocity and , then is said to be the resultant velocity of the particle.


$$\overrightarrow{v_1}$$
 $\overrightarrow{v_2}$

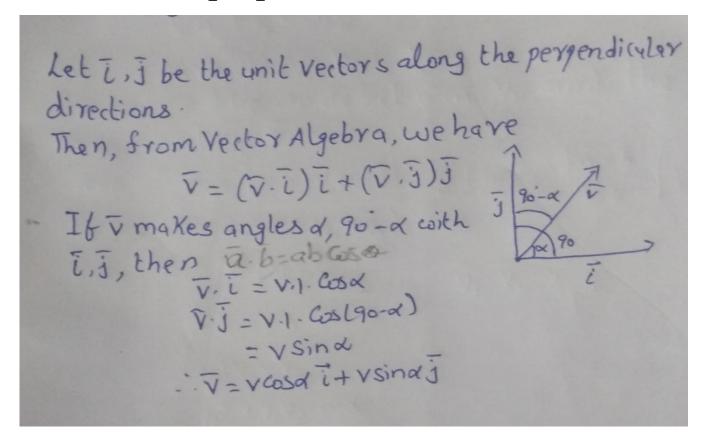
$$\overrightarrow{v_1} + \overrightarrow{v_2}$$

Book work 1: To find the magnitude and direction of the resultant of the velocity $\overrightarrow{v_1}$ and $\overrightarrow{v_2}$

Corollary 1: If $\overrightarrow{v_1}$ nd $\overrightarrow{av_2}$ equal magnitude, say v then the resultant is equally inclined at an angle

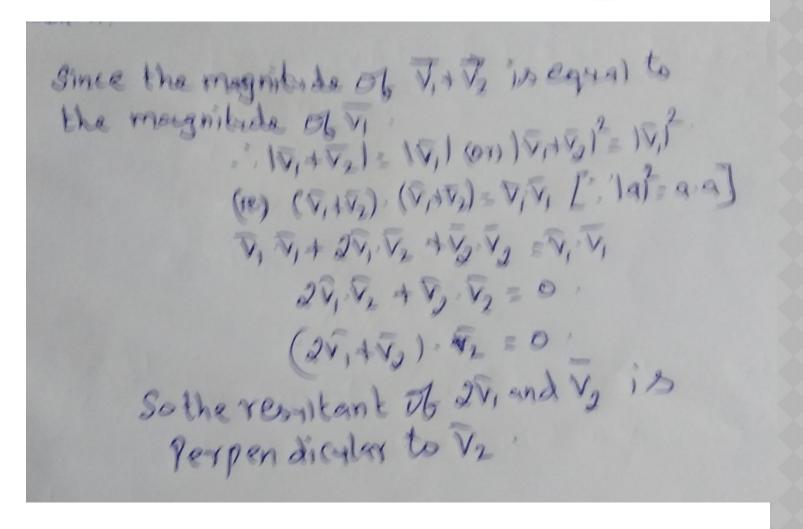
Corollary 2: If $ar\overline{v_1}$ are representational representation and in their direction.

Resolution of a velocity into itscomponents: Given the velocities $\overline{v_1}$ and $\overline{v_2}$ we have the resultant as $\overline{v_1} + \overline{v_2}$,
conversely, if $\overline{v_1} + \overline{v_2}$ is given, the
quantities $\overline{v_1}$ and $\overline{v_2}$ are said to be
components of $\overline{v_1} + \overline{v_2}$


Bookwork 2

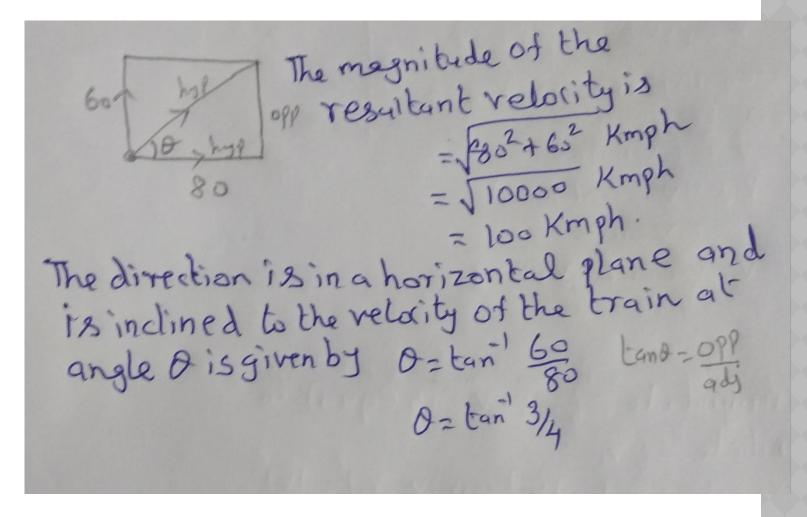
To resolve a velocity into components in two given directions

Let ê, ê, be the unit vectors in the given directions. BOOKWOYKZ: Now V may be expressed as a linear Combination let them make angles of, B with V. de P, ie, as v = ae, +be, -11) Mylliplying vertorially bye ê, xv = 9(ê, xê,) + b(ê, xê) VSind n = 0+ bSin(d+B)n where his the unit vector perpendicular to both & E. Such that & E. A. fight a right-handed triad. ·· VSind n=bSin(d+3)n V Sind-Bin(d+B) b= VSind Sin(d+8)


Equi) Multiplying Vectorially by êz ê2 x v = a (ê2 xê,) + b(ê2 xê2) Vsing(-n) = a Sin(d+B) n +b (0). Vsing (-A) = asin(a+B) 7 VsinB = a Sin(x+B). - a= VsinB Sin(d+B) Hence V = V Sin B P, + V Sin & P2 Sin(a+B) Sin(a+B) Component of a vector in a given direction: Given a vector \vec{v} and a direction specified by a unit vector \hat{e} , the scalar quantity $\vec{v} \cdot \hat{e}$ is called the components of \vec{v} in the direction of \hat{e}

Bookwork 3: To express the velocity in terms of its components in two perpendicular directions.

Problems


1. A particle has two velocities $\overline{v_1}$ anc $\overline{v_2}$. Its resultant velocity is equal to $\overline{v_1}$ in magnitude. Show that, when the velocit $\overline{v_1}$ is doubled, the new resultant is perpendicular to $\overline{v_2}$

2. A particle has two velocities of equal magnitudes inclined to each other at an angle θ . If one of them is halved, the angle between the other and the original resultant velocity is bisected by the new resultant. Show that θ = 120 degree.

Let OA, OB be the given relocities. Complete the Parallelogram OACB. Since OA = OB, OC biseels LAOB. Let B be the midpoint of OB Complete the parallelogram OACB. Now c'is the midpoint of Ac. Since oc in the bisector of LACE, OA = Ac' = 1. SO OA= OC. BUT OA= 0B Hence socaisan equilateral triungle and LAGC= Go. Hence / AOB = 120

3. A man seated in a train whose velocity is 80kmph throws a ball horizontally and perpendicular to the train with a velocity of 60kmph. Find the velocity of the ball immediately after the throw.

4. A boat which can stream in still water with a velocity of 48 kmph is steaming with its bow pointed due east when it is carried by a current which flows northward with a speed of 14 kmph. Find the actual distance it would travel in 12 minutes.

Solution

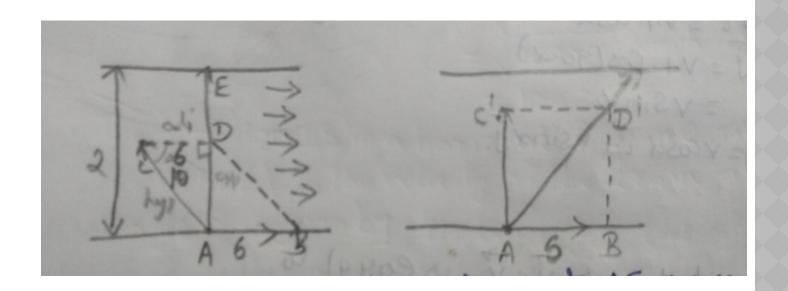
Resultant Speed of the Vessel = \$\frac{148^2+14^2}{48^2+14^2} Kmph = \2304+196 Kmp.h 1000 to 1000 Km. p.h = 50 Km.ph Distance travelled in 12 minutes = 50x12 2 10 Km.

167- = 3111 (000) + 1 6 LIG = 15/

5. A stream is running at a speed of 4 kmph. Its breadth is one quarter of a mile. A man can row a boat at a speed of 5 mlph in still water. Find the direction in which he must row in order to go perpendicular to the stream and the time it takes him to cross the stream so.

Let AP be the actual path of about.
Let AB denote the relocity of the stream and Ac denote the relocity of the boat due to rowing.
Complete the parallelogram ABQC.
Then Q will be on AP and AQ with an denote the resultant velocity of denote the resultant velocity of

the boat. Now, $BQ = AQ^2 + AB^2$ $AQ = \sqrt{BQ^2 - AB^2} = \sqrt{Ac^2 - AB}$ $= \sqrt{5^2 - 4^2} = \sqrt{25 - 16} = \sqrt{9}$ AQ = 3.


The resultant Speed of the bootis 3 ml.p.h.

The time theman takes to cross the stream

is $\frac{1}{4} \times \frac{1}{3} \times 60 = 5 \text{ minutes}$.

: Icaa $\theta = \tan \frac{1}{3}$ [tame = 019]

- 6. A boat capable of moving in still water with a speed of 10 kmph crosses a river, 2 km broad, flowing with a speed of 6 kmph. Find
- (i) The time of crossing route and
- (ii) The minimum time of crossing.

(1) The shortest route is the route AE pergendilular to the Stream. Let AB and Ac denote respectively the velocity of the boat due to rowing so that the resultant Velocity AD is along AE Its magnitude AD is AD= VAc2-OD = 1102-62 = V100-36 = 164

= 8 Kmph.

Time taken to cross the stream by the boot is = 2/g kmph. [Speed | 10 mg and and and = 2/8×60 = 15 Kmpmin.

The time of crossing is minimum

The minimum time of crossing = displacement perpendicular

Speed in this direction

= 2 hour.

= 2x60 = 12 minutes.

7. A man can swim perpendicularly across a stream of breadth 100m in 4 minutes when there is no current and in 5 minutes when there is a downward current, Find the velocity of the current

Solution:

born 125m/mt The velocity of the man in Still water = 100 The relocity of theman perpendicular when there is a carrent is = 100 = 20 m/mt. Taking the unit vectors ? and j perpendicular vector. we get these relocities as, 25 [Cosoj+Sinot-i)], vi. The resultant of these two is equal to the resultant velocity of the man which is 205. 25[-sinoi+ cosoj]+vi = -20j Vi+20j = -25[-sino7+603] |vi+25] = |25 (Sinoi+ (03)) = V2+202 = 25 (Sin20+ 6020) V2+202=252 | ai + b3 |= a+ b2 V2 = 252-202 = 625 - 400 V2=205 ... The relocity of the current is 15 m/mt