QUEUE

By
Ms.). Joy Rose
Assistant Professor

INTRODUCTION

» Queue Is an abstract data structure.

» A queue Is open at both its ends. One end
Is always used to insert data (enqueue)
and the other Is used to remove data
(dequeue).

» Queue follows First-In-First-Out (FIFO)
methodology, 1.e., the data item stored
first will be accessed first.

FIRST IN
LAST OUT , mradderidl) FIRST OUT

A real-world example of queue can be a single-lane one-way
road, where the vehicle enters first, exits first.

More real-world examples can be seen as queues at the ticket
windows and bus-stops

Queue Representation

r 4 B
In Data Data data Data Out
| e — 4

Last In Last Out First In First Out

Queue

A gueue can also be implemented using Arrays,
Linked-lists, Pointers and Structures.

For the sake of simplicity, we shall implement queues
using one-dimensional array.

Basic Operations

Queue operations may involve initializing or defining the
queue, utilizing it, and then completely erasing it from
the memory.

Here we shall try to understand the basic operations
associated with queues —

e enqueue() — add (store) an item to the queue.
» dequeue() — remove (access) an item from the queue.

Enqueue Operation:

Queues maintain two data pointers, front and rear. Therefore,
its operations are comparatively difficult to implement than
that of stacks.

The following steps should be taken to enqueue (insert) data
into a queue —

o Step | — Check if the queue is full.

o Step 2 - If the queue is full, produce overflow error and
exit.

o Step 3 — If the queue is not full, increment rear pointer to
point the next empty space.

o Step 4 — Add data element to the queue location, where the
rear is pointing.

e Step 5 — return success.

Rear

.: ’ = n v . -
> ol ' o o ™
B
R
! ! ’
'S
L\

Queue Enqueue

Dequeue Operation:

Accessing data from the queue Is a process of two
tasks — access the data where front Is pointing
and remove the data after access. The following
steps are taken to perform dequeue operation —

o Step 1 — Check if the queue 1s empty.

o Step 2 — If the queue 1s empty, produce underflow
error and exit.

o Step 3 — If the queue 1s not empty, access the data
where front is pointing.

o Step 4 — Increment front pointer to point to the
next available data element.

o Step 5 — Return success.

Rear Front

» = . - g
before D l [C | B '_ A
> -
Rear Front
—— :
after [D | o J 8 | dequeue
Queue \

A

Queue Dequeue

