
QUEUE

By 

Ms. J. Joy Rose

Assistant Professor



INTRODUCTION

 Queue is an abstract data structure.

 A queue is open at both its ends. One end

is always used to insert data (enqueue)

and the other is used to remove data

(dequeue).

 Queue follows First-In-First-Out (FIFO)

methodology, i.e., the data item stored

first will be accessed first.



A real-world example of queue can be a single-lane one-way 

road, where the vehicle enters first, exits first. 

More real-world examples can be seen as queues at the ticket 

windows and bus-stops



Queue Representation

A queue can also be implemented using Arrays, 

Linked-lists, Pointers and Structures. 

For the sake of simplicity, we shall implement queues 

using one-dimensional array.



Basic Operations

Queue operations may involve initializing or defining the

queue, utilizing it, and then completely erasing it from

the memory.

Here we shall try to understand the basic operations

associated with queues −

 enqueue() − add (store) an item to the queue.

 dequeue() − remove (access) an item from the queue.



Enqueue Operation:

Queues maintain two data pointers, front and rear. Therefore, 
its operations are comparatively difficult to implement than 
that of stacks.

The following steps should be taken to enqueue (insert) data 
into a queue −

 Step 1 − Check if the queue is full.

 Step 2 − If the queue is full, produce overflow error and 
exit.

 Step 3 − If the queue is not full, increment rear pointer to 
point the next empty space.

 Step 4 −Add data element to the queue location, where the 
rear is pointing.

 Step 5 − return success.





Dequeue Operation:

Accessing data from the queue is a process of two 
tasks − access the data where front is pointing 
and remove the data after access. The following 
steps are taken to perform dequeue operation −

 Step 1 − Check if the queue is empty.

 Step 2 − If the queue is empty, produce underflow 
error and exit.

 Step 3 − If the queue is not empty, access the data 
where front is pointing.

 Step 4 − Increment front pointer to point to the 
next available data element.

 Step 5 − Return success.




