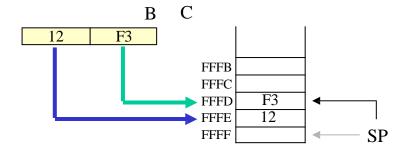

Stack and Subroutines

By
Mrs. B. Gomathi
Assistant Professor

The Stack

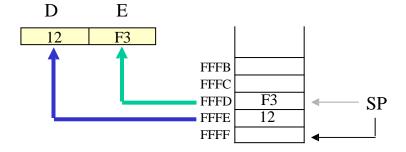
- The stack is an area of memory identified by the programmer for temporary storage of information.
- The stack is a LIFO structure.
- Last In First Out.
- The stack normally grows backwards into memory.
 - In other words, the programmer defines the bottom of the stack and the stack grows up into reducing address range.

The Stack


- Given that the stack grows backwards into memory, it is customary to place the bottom of the stack at the end of memory to keep it as far away from user programs as possible.
- In the 8085, the stack is defined by setting the SP (Stack Pointer) register.
 - LXI SP, FFFFH
- This sets the Stack Pointer to location FFFFH (end of memory for the 8085).
- The Size of the stack is limited only by the available memory

Saving Information on the Stack

- Information is saved on the stack by PUSHing it on.
 - It is retrieved from the stack by POPing it off.
- The 8085 provides two instructions: PUSH and POP for storing information on the stack and retrieving it back.
 - Both PUSH and POP work with register pairs ONLY.


The PUSH Instruction

- PUSH B (1 Byte Instruction)
 - Decrement SP
 - Copy the contents of register B to the memory location pointed to by SP
 - Decrement SP
 - Copy the contents of register C to the memory location pointed to by SP

The POP Instruction

- POP D (1 Byte Instruction)
 - Copy the contents of the memory location pointed to by the SP to register E
 - Increment SP
 - Copy the contents of the memory location pointed to by the SP to register D
 - Increment SP

Operation of the Stack

- During pushing, the stack operates in a "decrement then store" style.
 - The stack pointer is decremented first, then the information is placed on the stack.
- During poping, the stack operates in a "use then increment" style.
 - The information is retrieved from the top of the the stack and then the pointer is incremented.
- The SP pointer always points to "the top of the stack".

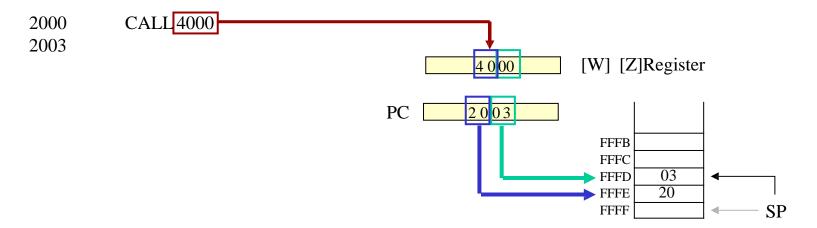
LIFO

 The order of PUSHs and POPs must be opposite of each other in order to retrieve information back into its original location.

PUSH B PUSH D ... POP D POP B

 Reversing the order of the POP instructions will result in the exchange of the contents of BC and DE.

Subroutines


- A subroutine is a group of instructions that will be used repeatedly in different locations of the program.
 - Rather than repeat the same instructions several times, they can be grouped into a subroutine that is called from the different locations.
- In Assembly language, a subroutine can exist anywhere in the code.
 - However, it is customary to place subroutines separately from the main program.

Subroutines

- The 8085 has two instructions for dealing with subroutines.
 - The CALL instruction is used to redirect program execution to the subroutine.
 - The RET insutruction is used to return the execution to the calling routine.

The CALL Instruction

- CALL 4000H (3 byte instruction)
- When CALL instruction is fetched, the MP knows that the next two Memory location contains 16bit subroutine address in the memory.

The CALL Instruction

- MP Reads the subroutine address from the next two memory location and stores the higher order 8bit of the address in the W register and stores the lower order 8bit of the address in the Z register
- Pushe the address of the instruction immediately following the CALL onto the stack [Return address]
- Loads the program counter with the 16-bit address supplied with the CALL instruction from WZ register.