

Books and Chapters 2018

S.No	Name/title of Paper	Name of the author	
1.	Introduction to mean labelling	Ms. K. Alamelu	
2.	Dom Chromatic number of certain graphs	Ms.E.F Beulah Angeline	

ISBN: 978-81-939929-1-3

International Conference on Applied Science Engineering and Technology

Pondicherry 29th - 30th December 2018

Organized by

Institute For Engineering Research and Publication (IFERP)

Vellangor Post, Avadi, Chennai-600062.

CONTENTS

SI.NO	D	TITLES AND AUTHORS	PAGE	NO
31.	A Survey on PaaSC	ontainer Platform for Application Deployment	31	
	4			
	•	B.Amutha		
32.	Verification of JESI (May 2018)	D204BTX Soft IP using Universal Verification Methodology	32	
	4	Vinay P		
	â	ShylaShree N		
33.	Ultra-Low Thermal Glass-ceramics	Expansion Co-efficient of Lithium Aluminosilicate	33	
	4	Anil Kumar ,		
	4	Anirban Chakrabarti		
	•	Manoj S.Shekhawat		
	^	AtiarRahaman Molla		
34.	Introduction to Mea	n Labeling	34	
	4	K.Alamelu		
35.	Social Media – Mal	ring Pathways for Rural Development in India	35	
	•	Dr. Rashmi Choudhary		
36.	Development and Design of Recommendation System for User Interest		36	
	Shopping by Machin	8		
10	٨	- · - · · · · · · · · · · · · · · · · ·		
	٨	Dr. S. Prabakaran		
37.	Optimization and A	nalysis of Super Finishing Lathe Attachment	37	
		3,5		
	٨	3 3		
	٠	Sher Afghan Khan		
38.	Traffic Sign Recogn Networks	ition and Classification Using Convolutional Neural	38	
	٨			
(* <u>*</u>))	٨	Subarna Panda		
39.	A Simple Detection	and Escaping Mechanism from Social Network Attacks	39	
	φ.	A.Praveena		
	٨	R.N.Devandra Kumar		
	٨	Sreeja.B.P		
40.	A Schema for Identi Computing	fying Trust Service Providers in Collaboration Cloud	· 40	
	٨	Venisha .A		
	A	Dr.M.Murali		
41.		ment of Boring Trepanning Assocation (Bta) Tool with o RZ 0.102µM and RA 0.587µM	41	
	4	Baba Rupesh B		

Principal
Nazareth College of Arts & Science
Kovilpathagai Main Road, Kannadapalayam,
Vellanoor Post, Avadi, Chennai-600062.

6th International Conference on Applied Science Engineering and Technology

Pondicherry, 29th - 30th December 2018

Introduction to Mean Labeling

K. Alamelu, Assistant Professor, Department of Mathematics, Nazareth college of Arts and Science, Chennai

Abstract:--

Graph labelling is an essential and interesting topic in graph theory. There are nearly 200 graph labeling techniques. Graph theory was introduced in the year 1960. In this paper, the graph is taken as simple, finite and undirected. V(G) represents vertex set and E(G) represents Edge set. Agraph labeling is the assignment of labels, that is represented by integers, to the edges or vertices, or both, of a graph .we shall study some of the types of labelling with illustration which gives a clear idea about it. The topics are explained with examples and supporting results and diagrams for clear idea about the concept. The study is limited with certain types.

Keywords:

Mean Graph – Even Mean labelling – Odd Mean Labelling – Strongly Multiplicative – Harmonious Multiplicative – Geometric mean labelling – Skolem difference

29th-30th December 2018

ICASET - 18

ISBN: 978-81-939929-1-3

Organized by:
Institute For Engineering Research and Publication (IFERP)

NAI 962 8

Nazareth College of Arts & Science Kovilpathagai Main Road, Kannadapalayam Vellanoor Post, Avadi, Chennai-600062

INTRODUCTION TO MEAN LABELING

Ms. K. Alamelu
Assistant Professor, Department of Mathematics,
Nazareth college of Arts and Science, Chennai-62
E mail id: alameluiyappan@gmail.com

Abstract

Graph labelling is an essential and interesting topic in graph theory. There are nearly 200 graph labeling techniques. Graph theory was introduced in the year 1960. In this paper, the graph is taken as simple, finite and undirected. V(G) represents vertex set and E(G) represents Edge set. A graph labeling is the assignment of labels, that is represented by integers, to the edges or vertices, or both, of a graph we shall study some of the types of labelling with illustration which gives a clear idea about it. The topics are explained with examples and supporting results and diagrams for clear idea about the concept. The study is limited with certain types.

Leywords: Mean Graph – Even Mean labelling – Odd Mean Labelling – Strongly Multiplicative – Harmonious Multiplicative – Geometric mean labelling – Skolem difference

Introduction

In this paper, the graph are taken as simple, finite and undirected. V(G) represents vertex set and E(G) represents Edge set. A graph labeling is the assignment of labels, that is represented by integers, to the edges or vertices, or both, of a graph. A vertex labelling is a function of V to a set of labels. A graph with such a vertex labelling function is defined as Vertex – labeled graph.

An edge labeling is a function of E to a set of labels and a graph with such a function is called as an edgelabelled graph. We shall discuss about labelling concept in this paper.

Definition - 1

A graph is said to be *mean graph* if a graph with p vertices and q edges has an injective function f from the vertices of G to $\{0,1,2,\ldots,q\}$ such that when each edge uv is labeled with (f(u) + f(v))/2 if f(u) + f(v) is even and (F(u) + f(v)+1)/2 if f(u) + f(v) is odd, then the resulting edge labels are distinct.

Definition -2

A graph with p vertices and q edges is said to be a *relaxed mean graph* if there exists a function f from the vertex set of G to $\{0, 1, 2, \dots, q-1, q+1\}$ such that the induced map f * from the edge set of G to $\{1, 2, \dots, q\}$ defined by

$$f * (e = uv) = \begin{cases} \frac{f(u) + f(v)}{2} & \text{if } f(u) + f(v) \text{ is even} \\ \frac{f(u) + f(v) + 1}{2} & \text{if } f(u) + f(v) \text{ is odd} \end{cases}$$

JETIRAB06219 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jeth.org

1183

Nazareth College of Arts & Science Kovilpathagai Main Road, Kannadapalayam, Vellanoor Post, Avadi, Chennai-600062

INTRODUCTION TO MEAN LABELING

Ms. K. Alamelu

Assistant Professor, Department of Mathematics, Nazareth college of Arts and Science, Chennai-62

E mail id: alameluiyappan@gmail.com

Abstract

Graph labelling is an essential and interesting topic in graph theory. There are nearly 200 graph labeling techniques. Graph theory was introduced in the year 1960. In this paper, the graph is taken as simple, finite and undirected. V(G) represents vertex set and E(G) represents Edge set. A graph labeling is the assignment of labels, that is represented by integers, to the edges or vertices, or both, of a graph we shall study some of the types of labelling with illustration which gives a clear idea about it. The topics are explained with examples and supporting results and diagrams for clear idea about the concept. The study is limited with certain types.

Leywords: Mean Graph – Even Mean labelling – Odd Mean Labelling – Strongly Multiplicative – Harmonious Multiplicative – Geometric mean labelling – Skolem difference

Introduction

In this paper, the graph are taken as sample, finite and undirected. V(G) represents vertex set and E(G) represents Edge set. A graph labeling is the assignment of labels, that is represented by integers, to the edges of vertices, or both, of a graph. A vertex labeling is a function of V to a set of labels. A graph with such a vertex labelling function is defined as Vertex – labeled graph.

An edge labeling is a function of E to a set of labels and a graph with such a function is called as an edgelabelled graph. We shall discuss about labelling concept in this paper.

Definition - 1

A graph is said to be *mean graph* if a graph with p vertices and q edges has an injective function f from the vertices of G to $\{0,1,2,\ldots,q\}$ such that when each edge uv is labeled with (f(u) + f(v))/2 if f(u) + f(v) is even and (F(u) + f(v)+1)/2 if f(u) + f(v) is odd, then the resulting edge labels are distinct.

Definition -2

A graph with p vertices and q edges is said to be a relaxed mean graph if there exists a function f from the vertex set of G to $\{0, 1, 2, \dots, q-1, q+1\}$ such that the induced map f * from the edge set of G to $\{1, 2, \dots, q\}$ defined by

$$f * (e = uv) = \begin{cases} \frac{f(u) + f(v)}{2} & \text{if } f(u) + f(v) \text{ is even} \\ \frac{f(u) + f(v) + 1}{2} & \text{if } f(u) + f(v) \text{ is odd} \end{cases}$$

JETTRAB06218 | Journal of Emerging Technologies and Innevestive Research (JETTR) www.jett.org.pd 118

Nazareth College of Arts & Science Kovilpathagai Main Road, Kannadapalayam, Vellangor Post, Avadi, Chennai-600062.

167 **ad 167**0 Egypton

ENGINEERING COLLEGE

THIRD NATIONAL CONFERENCE

OH

"EMERGING TRENDS IN MATHEMATICAL SCIENCES"

(NCETMS-2018)

(ON THE REMEMBRANCE OF 131st BIRTH ANNIVERSARY OF SRINIVASA RAMANUJAN)

20th DECEMBER, 2018

PROCEEDINGS

CHENNAI 600 062 SO

Principal
Nazareth College of Arts & Science
Kovilpathagai Main Road, Kannadapalayam,
Vellanoor Post, Avadi, Chennai-600062.

TORRER

Certificate

International Conference on COMPUTING SCIENCES ICCS 2018-2019

LOYOLA

Research Institute of
Mathematics and
Computing Sciences (LIMCOS)
Loyola College, Chennai, India.

This is to certify that

Mr./Ms./Dr./Prof. Beulah Angeline & F

attended the

"International Conference on Computing Sciences" (ICCS 2018-2019)
and presented a paper / participated in the conference held during November 16-17, 2018.

Paper Title: Dom - Chromotic number of Certain graphs

(U)

Dr. M. A. Basker Head, Dept. of Mathematics

Loyola College, Chennai.

. Of that William & s

Rev. Dr. M. Albert William, S. GE OF Director, LIMCOS Loyola College, Chennal E CHENN 600 067

Ginaham

Rev. Dr. F. Andrew, S.J.

Principal

Loyola College, Chennai.

Proceedings of the INTERNATIONAL CONFERENCE ON COMPUTING SCIENCES

ICCS 2018-2019

NOVEMBER 16 & 17, 2018

ISBN 978-81-910217-0-9

Organized by
Department of Mathematics, Statistics,
Computer Science and Computer Applications

In collaboration with
Loyola Research Institute of Mathematics
& Computing Sciences

(LIMCOS)AI

Loyola College, Chennai, India

Nazareth College of Arts & Science Kovilpathagai Main Road, Kannadapalayam, Vellanoor Post, Avadi, Chennai-600062.

NAZARETHCOLLEGE OF ARTS AND SCIENCE


DEPARTMENT OF MATHEMATICS

REPORT ON THE INTERNATIONAL CONFERENCE ATTENDED-JULY 2018

Loyola College, Chennai, conducted an "INTERNATIONAL CONFERENCE ON COMPUTING SCIENCES" ON 16th & 17th November 2018 at the College premises. Ms. Beulah Angeline, Assistant Professor, Department of Mathematics, attended the conference and presented her paper titled "DOM-CHROMTIC NUMBER OF CERTAIN GRAPHS". The two day Conference had 14 sessions which was headed by 14 resource persons, both from national and international level on the first day and on the second day nearly 300 faculties presented their paper on various fields. The various topics discussed by the resource persons were

- Security Challenges of the IoT in Kuwait
- > Mathematical & Computational concepts in Arts & Science
- ▶ Data Engineering & Analytics
- > Variable Selection using Kullback- Leibler Divergence loss
- > Some open problems in graph labeling
- > Internet of things for Engineering Applications
- ➤ Parametric estimation of an M/Er/I queue
- ➤ Shift invariants in harmonic analysis
- ➤ Revolution in Business, IT and people
- > Social network and its applications
- > Cordial words recognized by automata
- > Artificial intelligence
- > Transformed distribution and its relevance in statistical analysis
- > On variant approximation property of group C- Algebras.

The paper was presented on 17th November, at the Maths SMART room between 2:00pm-3:00pm

Signature of the staff

Nazareth College of Arts & Science Kovilpathagai Main Road, Kannadapalayam, Vellanoor Post, Avadi, Chennai-600062.

Equitable Domination In Inflated Graphs

Al. Meenakshi, J. Baskar Babujee

¹Department of Mathematics, Veltech Rangarajan Dr. Shagunthala R&D
Institute of Science and Technology, Chennai-600062, India.

²Department of Mathematics, Anna University, M IT Campus, Chennai-600 044, India.
Email:meenakshiannamalai1@gmail.com, baskarbabujee@yahoo.com

ABSTRACT

In a graph G = (V, E) a subset D of V is called an equitable dominating set of a graph G if for every $u \in V - D$, there exists a vertex $v \in D$ such that $uv \in E(G)$ and $|\deg(u) - \deg(v)| \le 1$. The minimum cardinality of such a dominating set is called equitable domination number of G and is denoted by $\gamma^e(G)$. The inflation graph G_l is obtained from a graph G by replacing every vertex x of degree d(x) by a clique $K_{d(x)}$. In this paper we study the equitable domination number for some inflated graphs and arrive with few general results.

Dom-Chromatic Number Of Certain Graphs

Joice Punitha M.¹, Beulah Angeline E. F.²

Department of Mathematics, Bharathi Women's College, Chennai, India.
 Department of Mathematics, Nazareth College of Arts and Science, Chennai, India.

ABSTRACT

In graph theory, coloring and dominating are two important areas which have been extensively studied. In 1958, domination was formalized as a theoretical area in graph theory by C. Berge [1]. He referred to the domination number as the introduction co-efficient of external stability and denoted it as $\beta(G)$. In 1962, Ore [2] was the first to use the term "domination" for undirected graphs and he denoted the domination number by $\delta(G)$. He also introduced the concepts of minimal and minimum dominating sets of vertices in a graph. In 1977, Cockayne and Hedetniemi [3] introduced the accepted notation $\gamma(G)$ to denote the domination number. The book by Haynes, Hedetniemi and Slater depicts the application of the concept of domination in dominating queens, sets of representatives, school bus routing, computer communication networks, (r, d)-configurations, radio stations, social network theory, landing surveying, kernels of games etc.

ICCS2018-19

Nazareth College of Arts & Science Kovilpathagai Main Road, Kannadapalayam, Vellanoor Post, Avadi, Chennai-600062.