Vector Spaces Linear Independence, Bases and Dimension

Premise

- We move to a higher level of abstraction
- A vector space is a set with anadditionandscalar multiplication that behave appropriately, that is, like Rⁿ
- Imagine a vector space as a class of a generic type (template) in object oriented programming, equipped with two operations.

7

Vector Spaces

Definition (Vector Space)

A (real)vector space V is a non-empty set equipped with an additionand ascalar multiplication operation such that for all a, $\beta \in \mathbb{R}$ and all u, v, $w \in V$:

- **1.** $\mathbf{u} + \mathbf{v} \in V$ (closure underaddition)
- 2. $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ (commutative law for addition)
- 3. $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$ (associative law for addition)
- 4. there is a single member 0 of V, called the zero vector, such that for all $\mathbf{v} \in V$, $\mathbf{v} + \mathbf{0} = \mathbf{v}$
- 5. for every $\mathbf{v} \in V$ there is an element $\mathbf{w} \in V$, written $-\mathbf{v}$, called then egative of \mathbf{v} , such that $\mathbf{v} + \mathbf{w} = \mathbf{0}$
- 6. av ∈V (closure under scalar multiplication)
- 7. $a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}$ (distributive law)
- 8. $(a + \beta)\mathbf{v} = a\mathbf{v} + \beta\mathbf{v}$ (distributive law)
- 9. $a(\beta \mathbf{v}) = (a\beta)\mathbf{v}$ (associative law for vector multiplication)
- 10. 1v = v

Examples

- set Rⁿ
- but the set of objects for which the vector space defined is valid are more than the vectors in Rⁿ.
- set of all functions F: R → R.
 We can define an addition f + g:

$$(f+g)(x) = f(x) + g(x)$$

and a scalar multiplication *af*:

$$(af)(x) = af(x)$$

- Example: $x + x^2$ and 2x. They can represent the result of the two operations.
- What is -f? and the zero vector?

9

The axioms given are minimum number needed. Other properties can be derived: For example:

$$(-1)\mathbf{x} = -\mathbf{x}$$

Proof:

$$0 = 0x = (1 + (-1))x = 1x + (-1)x = x + (-1)x$$

Adding -x on both sides:

$$-x = -x + 0 = -x + x + (-1)x = (-1)x$$

which proves that $-\mathbf{x} = (-1)\mathbf{x}$.

Try the same with -f.

Examples

- $V = \{0\}$
- the set of all m × nmatrices
- the set of all infinite sequences of real numbers, y = {y₁, y₂, ..., yₙ, ...,}, yᵢ ∈R.
 (y = {yₙ}, n≥1)
 - addition of $y = \{y_1, y_2, ..., y_n, ..., \}$ and $z = \{z_1, z_2, ..., z_n, ..., \}$ then:

$$\mathbf{y} + \mathbf{z} = \{y_1 + z_1, y_2 + z_2, \dots, y_n + z_n, \dots, \}$$

– multiplication by a scalar $a \in \mathbb{R}$:

$$a$$
y = { a **y**₁, a **y**₂, ..., a **y**_n, ..., }

• set of all vectors in R³ with the third entry equal to 0 (verify closure):

$$W = \begin{array}{c} y \\ 0 \\ \end{array} \quad x \quad x, y \in \mathbb{R}$$

11

Linear Combinations

Definition (Linear Combination)

For vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ in a vector space V, the vector

$$\mathbf{v} = a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \ldots + a_k \mathbf{v}_k$$

is called alinear combination of the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$

- . The scalars *a_i* are calledcoefficients.
 - To find the coefficients that given a set of vertices express by linear combination a given vector, we solve a system of linear equations.
 - If F is the vector space of functions from R to R then the function $f: x \mapsto 2x^2 + 3x + 4$ can be expressed as a linear combination of:

$$g: x \rightarrow x^2, h: x \rightarrow x, k: x \rightarrow 1$$
that is:

$$f = 2g + 3h + 4k$$

• Given two vectors \mathbf{v}_1 and \mathbf{v}_2 , is it possible to represent any point in the Cartesian plane?

Subspaces

Definition (Subspace)

Asubspace W of a vector space V is a non-empty subset of V that is itself a vector space under the same operations of addition and scalar multiplication as V.

Theorem

Let V be a vector space. Then a non-empty subset W of V is a subspace if and only if both the following hold:

- for all u, v ∈ W, u + v ∈ W
 (W is closed underaddition)
- for all v ∈W and a ∈R, av ∈W
 (W is closed under scalar multiplication)

ie, all other axioms can be derived to hold true

Example

- The set of all vectors in R³ with the third entry equal to 0.
- The set $\{0\}$ is not empty, it is a subspace since 0+0=0 and a0=0 for any $a \in \mathbb{R}$.

Example

In \mathbb{R}^2 , the lines y = 2x and y = 2x + 1can be defined as the sets of vectors:

$$S = \begin{cases} \sum_{x} \sum_{y=2x, x \in \mathbb{R}} \sum_{x} \sum_{y=2x+1, x \in \mathbb{R}} \sum_{y} \sum_{y=2x+1, x \in \mathbb{R}} \sum_{y} \sum_{x=2x+1, x \in \mathbb{R}} \sum_{y=2x+1, x \in \mathbb{R}} \sum_{x=2x+1, x \in \mathbb{R}} \sum_{x=2x+1, x \in \mathbb{R}} \sum_{y=2x+1, x \in \mathbb{R}} \sum_{x=2x+1, x \in \mathbb{R}} \sum_{x=2x+1, x \in \mathbb{R}} \sum_{y=2x+1, x \in \mathbb{R}} \sum_{x=2x+1, x \in \mathbb{R}}$$

Example (cntd)

- 1. The set S is non-empty, since $\mathbf{0} = 0\mathbf{v} \in S$.
- 2. closure under addition:

$$\mathbf{u} = \mathbf{s} \begin{array}{c} \Sigma \Sigma \\ 1 \\ 2 \end{array} \in \mathbf{S}, \quad \mathbf{w} = t \begin{array}{c} \Sigma \Sigma \\ 1 \\ 2 \end{array} \in \mathbf{S}, \quad \text{for some } \mathbf{s}, \ t \in \mathbf{R} \end{array}$$

$$\mathbf{u} + \mathbf{w} = s\mathbf{v} + t\mathbf{v} = (s + t)\mathbf{v} \in S \text{ since } s + t \in \mathbb{R}$$

3. closure under scalar multiplication:

$$\mathbf{u} = s \quad \frac{\sum_{i=1}^{N} \sum_{j=1}^{N} \mathbf{e} S}{2} \quad \text{for some } s \in \mathbb{R}, \quad a \in \mathbb{R}$$

$$a\mathbf{u} = a(s(\mathbf{v})) = (as)\mathbf{v} \in S \text{ since } as \in \mathbb{R}$$

Note that:

u, w and a ∈R must bearbitrary

Note that:

- proving just one of the above couterexamples is enough to show that *U* is not a subspace
- it is sufficient to make them fail for particular choices
- a good place to start is checking whether $0 \in S$. If not then S is not asubspace

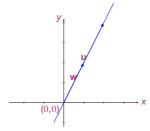
Theorem

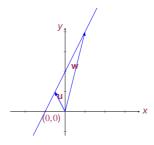
A non-empty subset W of a vector space is a subspace if and only if for all $\mathbf{u}, \mathbf{v} \in W$ and all

 $a, \beta \in \mathbb{R}$, we have $a\mathbf{u} + \beta \mathbf{v} \in W$.

That is, W isclosed under linear combination.

Geometric interpretation:





~ The line y = 2x + 1 is an affine subset, a "translation" of a subspace

Null space of a Matrix is a Subspace

Theorem

For any $m \times n$ matrix A, N(A), ie, the solutions of Ax = 0, is a subspace of \mathbb{R}^n

Proof

1.
$$A0=0$$
 = \Rightarrow 0 $\in N(A)$

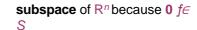
2. Suppose $\mathbf{u}, \mathbf{v} \in N(A)$, then $\mathbf{u} + \mathbf{v} \in N(A)$:

$$A(u+v) = Au + Av = 0 + 0 = 0$$

3. Suppose $\mathbf{u} \in N(A)$ and $a \in \mathbb{R}$, then $a\mathbf{u} \in N(A)$:

$$A(au) = A(au) = aAu = a0 = 0$$

The set of solutions S to a general system $A\mathbf{x} = \mathbf{b}$ is not a



Affine subsets

Definition (Affine subset)

If W is a **subspace** of a **vector space** V and $x \in V$, then the set x + W defined by

$$\mathbf{x} + W = \{\mathbf{x} + \mathbf{w} \mid \mathbf{w} \in W\}$$

is said to be anaffine subsetof V.

The set of solutions S to a general system $A\mathbf{x} = \mathbf{b}$ is an affine **subspace**, indeed recall that if \mathbf{x}_0 is any solution of the system

$$S = \{ \mathbf{x}_0 + \mathbf{z} \mid \mathbf{z} \in N(A) \}$$

Range of a Matrix is a Subspace

Theorem

For any $m \times n$ matrix A, $R(A) = \{Ax \mid x \in \mathbb{R}^n\}$ is a subspace of \mathbb{R}^m

Proof

- 1. A0=0 = \Rightarrow 0 $\in R(A)$
- 2. Suppose \mathbf{u} , $\mathbf{v} \in R(A)$, then $\mathbf{u} + \mathbf{v} \in R(A)$: ...
- 3. Suppose $\mathbf{u} \in R(A)$ and $a \in R$, then $a\mathbf{u} \in R(A)$: ...

Linear Span

- If $\mathbf{v} = a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \ldots + a_k\mathbf{v}_k$ and $\mathbf{w} = \beta_1\mathbf{v}_1 + \beta_2\mathbf{v}_2 + \ldots + \beta_k\mathbf{v}_k$, then $\mathbf{v} + \mathbf{w}$ and $s\mathbf{v}$, $s \in \mathbb{R}$ are also linear combinations of the vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$.
- The set of all linear combinations of a given set of vectors of a vector space V forms a subspace:

Definition (Linear span)

Let V be a **vector space** and $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \in V$. The linear span of $X = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is the set of all linear combinations of the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$, denoted by Lin (X), that is:

$$Lin(\{v_1, v_2, ..., v_k\}) = \{a_1v_1 + a_2v_2 + ... + a_kv_k \mid a_1, a_2, ..., a_k \in \mathbb{R}\}$$

Theorem

If $X = \{v_1, v_2, ..., v_k\}$ is a set of vectors of avector space V, then Lin(X) is a **subspace** of V and is also called the **subspace** spanned by X.

It is the smallest **subspace** containing the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$.

Example

- $Lin(\{v\}) = \{av \mid a \in \mathbb{R}\}\$ defines a line in \mathbb{R}^n .
- Recall that a plane in R³ has two equivalent representations:

$$ax + by + cz = d$$
 and $x = p + sv + tw$, $s, t \in \mathbb{R}$

where **v** and **w** are non parallel.

-If
$$d = 0$$
 and $p = 0$, then $\{x \mid x = sv + tw, s, t, \in R\} = Lin(\{v, w\})$

and hence a **subspace** of \mathbb{R}^n .

-If d f = 0, then the plane is not a subspace. It is an affine subset, a translation of a subspace. (recall that one can also show directly that a subset is a subspace or not)

Spanning Sets of a Matrix

Definition (Column space)

If A is an $m \times n$ matrix, and if $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$ denote the columns of A, then the column spaceor range of A is

$$CS(A) = R(A) = Lin(\{a_1, a_2, ..., a_k\})$$

and is a **subspace** of R^m

. Definition (Row space)

If A is an $m \times n$ matrix, and if $\overrightarrow{a}_{\downarrow}$, $\overrightarrow{a}_{\downarrow}$, ..., \overrightarrow{a}_{k} denote the rows of A, then therow space of A is

$$RS(A) = Lin(\{ \overrightarrow{a}_1, \overrightarrow{a}_2, \ldots, \overrightarrow{a}_k \})$$

and is a **subspace** of \mathbb{R}^n .

• If A is an $m \times n$ matrix, then for any $\mathbf{r} \in RS(A)$ and any $\mathbf{x} \in N(A)$, $(\mathbf{r}, \mathbf{x}) = 0$; that is, \mathbf{r} and \mathbf{x} are orthogonal, $RS(A) \perp N(A)$. (hint: look at $A\mathbf{x} = \mathbf{0}$)

Summary

We have seen:

- Definition of vector space and subspace
- Linear combinations as the main way to work with vector spaces
- Proofs that a given set is a vector space
- Proofs that a given subset of a vector space is a subspace or not
- Definition of linear span of set of vectors
- Definition of row and column spaces of a matrix CS(A) = R(A) and RS(A) ⊥ N(A)

Linear Independence

Definition (Linear Independence)

Let V be a **vector space** and $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \in V$. Then $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are linearly independent set) if and only if the vector equation

$$a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \cdots + a_k\mathbf{v}_k = \mathbf{0}$$

has the unique solution

$$a_1 = a_2 = \cdots = a_k = 0$$

Definition (Linear Dependence)

Let V be a **vector space** and $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \in V$. Then $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are linearly dependent (or form alinearly dependent set) if and only if there are real numbers a_1, a_2, \dots, a_k , not all zero, such that

$$a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \cdots + a_k\mathbf{v}_k = \mathbf{0}$$

Example

In R², the vectors

$$\mathbf{v} = \begin{bmatrix} \Sigma & \Sigma & \Sigma & \Sigma \\ 1 & \text{and} & \mathbf{w} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

are linearly independent.

The homogeneous linear system has only the trivial solution, a = 0, $\beta = 0$, so linear independence.

Example

In R³, the following vectors are linearly dependent:

$$\mathbf{v}_{1} = 2 , 1$$
 $\mathbf{v}_{2} = 1 , 2$ $\mathbf{v}_{3} = 4$ $\mathbf{v}_{3} = 4$ $\mathbf{v}_{3} = 4$ $\mathbf{v}_{4} = 1$

Indeed:
$$2 v_1 + v_2 + v_3 = 0$$

Theorem

The set $\{v_1, v_2, ..., v_k\} \subseteq V$ is linearly dependent <u>if and only if</u> at least one vector \mathbf{v}_i is a linear combination of the other vectors.

<u>Proof</u>

=⇒

If $\{v_1, v_2, \dots, v_k\}$ are linearly dependent then

$$a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \cdots + a_k\mathbf{v}_k = \mathbf{0}$$

has a solution with some $a_i f = 0$, then:

$$\mathbf{v}_{i} = -\frac{\underline{a}_{1}}{a_{i}}\mathbf{v}_{1} - \frac{\underline{a}_{2}}{a_{i}}\mathbf{v}_{2} - \cdots - \frac{\underline{a}_{i-1}}{a_{i}}\mathbf{v}_{i-1} - \frac{\underline{a}_{i+1}}{a_{i}}\mathbf{v}_{i+1} + \cdots - \frac{\underline{a}_{k}}{a_{i}}\mathbf{v}_{k}$$

which is a linear combination of the other vectors

⇐=

If \mathbf{v}_i is a lip combination of the other vectors, eggin in β_{i-1} \mathbf{v}_{i-1} \mathbf{v}_{i-1} \mathbf{v}_{i+1} \mathbf{v}_{i+1} \mathbf{v}_{i+1}

then

$$\beta_1 \mathbf{v}_1 + \cdots + \beta_{i-1} \mathbf{v}_{i-1} - \mathbf{v}_i + \beta_{i+1} \mathbf{v}_{i+1} + \cdots + \beta_k \mathbf{v}_k = \mathbf{0}$$

Corollary

Two vectors are linearly dependent <u>if and only if</u> at least one vector is a scalar multiple of the other.

$$\mathbf{v}_{1} = 2$$
, $\mathbf{v}_{2} = 1$

are linearly independent

Theorem

In a **vector space** *V*, a non-empty set of vectors that contains the zero vector is linearly dependent.

Proof:

$$\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_k\}\subset V$$

$$\{v_1, v_2, \ldots, v_k, 0\}$$

$$0\mathbf{v}_1 + 0\mathbf{v}_2 + \dots + 0\mathbf{v}_k + a\mathbf{0} = \mathbf{0},$$
 $a f = 0$

Uniqueness of linear combinations

Theorem

If $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are linearly independent vectors in V and if

$$a_1$$
v₁ + a_2 **v**₂ + ... + a_k **v**_k = b_1 **v**₁ + b_2 **v**₂ + ... + b_k **v**_k

then

$$a_1 = b_1$$
, $a_2 = b_2$, ... $a_k = b_k$.

• If a vector **x** can be expressed as a linear combination of linearly independent vectors, then this can be done in only one way

$$\mathbf{X} = C_1 \mathbf{V}_1 + C_2 \mathbf{V}_2 + \ldots + C_k \mathbf{V}_k$$

Testing for Linear Independence in R ⁿ

For k vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \in \mathbb{R}^n$

$$a_1$$
v₁ + a_2 **v**₂ + · · · + a_k **v**_k

is equivalent to

Ax

where A is the $n \times k$ matrix whose columns are the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ and $\mathbf{x} = [a_1, a_2, \dots, a_k]^T$:

Theorem

The vectors \mathbf{v}_1 , \mathbf{v}_2 , ..., \mathbf{v}_k in \mathbb{R}^n are linearly dependent if and only if the linear system $A\mathbf{x} = \mathbf{0}$, where A is the matrix $A = [\mathbf{v}_1 \ \mathbf{v}_2 \cdots \mathbf{v}_k]$, has a solution other than $\mathbf{x} = \mathbf{0}$. Equivalently, the vectors are linearly independent precisely when the only solution to the system is $\mathbf{x} = \mathbf{0}$.

If vectors are linearly dependent, then any solution $\mathbf{x} f = \mathbf{0}$, $\mathbf{x} = [a_1, a_2, \dots, a_k]^T$ of $A\mathbf{x} = \mathbf{0}$ gives a non-trivial linear combination $A\mathbf{x} = a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \dots + a_k\mathbf{v}_k = \mathbf{0}$

Recall that $A\mathbf{x} = \mathbf{0}$ has precisely one solution $\mathbf{x} = \mathbf{0}$ iff the $n \times k$ matrix is row equiv. to a row echelon matrix with k leading ones, ie, iff $\operatorname{rank}(A) = k$

Theorem

Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \in \mathbb{R}^n$. The set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ islinearly independentiff the $n \times k$ matrix $A = [\mathbf{v}_1 \ \mathbf{v}_2 \dots \mathbf{v}_k]$ has rank k.

Theorem

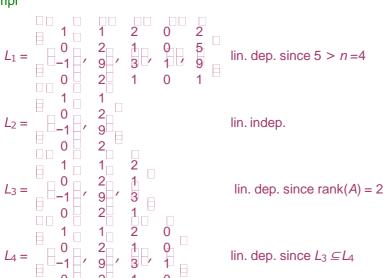
The maximum size of a linearly independent set of vectors in \mathbb{R}^n is n.

- $\operatorname{rank}(A) \leq \min\{n, k\}$, hence $\operatorname{rank}(A) \leq n \Rightarrow \text{ when lin. indep. } k \leq n$.
- we exhibit an example that has exactly n independent vectors in Rⁿ (there are infinite examples):

This is known as the standard basis of \mathbb{R}^n .

Exampl

е



Linear Independence and Span in R n

Let $S = \{v_1, v_2, ..., v_k\}$ be a set of vectors in \mathbb{R}^n . What are the conditions for S to span \mathbb{R}^n and be linearly

independent? Let A be the $n \times k$ matrix whose columns are the

vectors from S.

- S spans \mathbb{R}^n if for any $v \in \mathbb{R}^n$ the linear system $A\mathbf{x} = \mathbf{v}$ is consistent for all $\mathbf{v} \in \mathbb{R}^n$. This happens when rank (A) = n, hence $k \ge n$
- S is linearly independent-iff the linear system $A\mathbf{x} = \mathbf{0}$ has a unique solution. This happens when rank (A) = k, Hence $k \le n$

Hence, to span \mathbb{R}^n and to be linearly independent, the set S must have exactly n vectors and the square matrix A must have det A f=0

Example

$$\mathbf{v}_1 = \begin{bmatrix} 2 & \mathbf{v} = 1 \\ 3 & \end{bmatrix}$$

$$124$$
 $|A| = 215 = 30 = f0$
 351

Bases

Definition (Basis)

Let *V* be a **vector space**. Then the subset $B = \{v_1, v_2, \dots, v_n\}$ of *V* is said to be abasisfor *V* if:

- 1. B is a linearly independent set of vectors, and
- 2. B spans V; that is, V = Lin(B)

Theorem

If V is a **vector space**, then a smallest spanning set is a basis of V.

Theorem

 $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a basis of V if and only if any $\mathbf{v} \in V$ is auniquelinear combination of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$

Example

 $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ is the standard basis of \mathbb{R}^n .

the vectors are linearly independent and for any $\mathbf{x} = [x_1, x_2, \dots, x_n]^T \in \mathbb{R}^n$,

$$\mathbf{x} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + \dots + x_n \mathbf{e}_n, i\mathbf{e},$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & +x_2 \end{bmatrix} + \dots + x_n \mathbf{e}_n$$

$$\mathbf{x} = x_1 \begin{bmatrix} 0 & 0 & 0 \\ 1 & +x_2 \end{bmatrix} + \dots + x_n \begin{bmatrix} 0 & 0 \\ 1 & +x_n \end{bmatrix}$$

Example

The set below is a basis of

R²:
$$\sum_{S=0}^{\infty} \sum_{S=0}^{\infty} \sum_{S=0}^{\infty$$

- any vector $\mathbf{b} \in \mathbb{R}^2$ is a linear combination of the two vectors in S
 - $\sim Ax = b$ is consistent for any b.
- S spans R² and is linearly independent

Example

Find a basis of the ${\color{red} {\bf subspace}}$ of ${\color{red} {\bf R}^3}$ given

by
$$W = \begin{bmatrix} x & y & x \\ y & x & x + y - 3 & z = 0 \\ x & z & \vdots \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} \mathbf{y} \\ \mathbf{z} \end{bmatrix} = \begin{bmatrix} \mathbf{x} \\ \mathbf{x} \end{bmatrix} = \begin{bmatrix} \mathbf{x} \\ \mathbf{z} \end{bmatrix} = \begin{bmatrix} \mathbf{x} \\ \mathbf{v} \end{bmatrix} = \begin{bmatrix} \mathbf$$

The set $\{v, w\}$ spans W. The set is also independent:

$$a\mathbf{v} + \beta \mathbf{w} = \mathbf{0} \Rightarrow a = 0, \beta = 0$$

Coordinates

Definition (Coordinates)

If $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a basis of a vector space V, then any vector $\mathbf{v} \in V$ can be expressed uniquelyas $\mathbf{v} = a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \dots + a_n\mathbf{v}_n$ then the real numbers a_1, a_2, \dots, a_n are the coordinates of \mathbf{v} with respect to the basis S.

We use the notation

$$[\mathbf{v}]_{S} = \begin{bmatrix} a_{1} \\ \vdots \\ a_{n} \\ \vdots \end{bmatrix}$$

to denote the coordinate vector of **v** in the basis **S**.

- We assume the order of the vectors in the basis to be fixed: aka, ordered basis
- Note that [v]_S is a vector in Rⁿ:Coordinate mappingcreates a one-to-one correspondence between ageneral vector space V and the fmailiar vector space Rⁿ.

Example

Consider the two basis of

$$B = \begin{cases} \sum_{1}^{\infty} \sum_{1}^{\infty$$

$$S = \begin{array}{ccc} . & \sum_{1} \sum$$

In the standard basis the coordinates of \mathbf{v} are precisely the components of the vector \mathbf{v} . In the basis S, they are suchthat

$$\mathbf{v} = -1 \quad \begin{array}{ccc} \Sigma & \Sigma & \Sigma & \Sigma & \Sigma & \Sigma \\ 1 & +3 & 1 & = & 2 \\ -1 & = & -5 \end{array}$$

Extension of the main theorem

Theorem

If A is an $n \times n$ matrix, then the following statements are equivalent:

- 1. A is invertible
- 2. Ax = b has a unique solution for any $b \in \mathbb{R}$
- 3. Ax = 0 has only the trivial solution, x = 0
- 4. the reduced row echelon form of A is I.
- **5**. |A| **≢** 0
- 6. The rank of A is n
- 7. The column vectors of A are a basis of \mathbb{R}^n
- 8. The rows of A (written as vectors) are a basis of \mathbb{R}^n

(The last statement derives from $|A^T| = |A|$.) Hence, simply calculating the determinant can inform on all the above facts. Exampl

$$\mathbf{v}_{1} = \begin{bmatrix} 1 & & 2 & & 4 \\ 2 & \mathbf{v} & \mathbf{z} & 1 \\ 3 & & 5 & & 11 \end{bmatrix}$$

This set is linearly dependent since $\mathbf{v}_3 = 2\mathbf{v}_1 + \mathbf{v}_2$ so $\mathbf{v}_3 \in \text{Lin}(\{\mathbf{v}_1, \mathbf{v}_2\}) \text{ andLin } (\{\mathbf{v}_1, \mathbf{v}_2\}) = \text{Lin}(\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\})$. The linear span of $\{\mathbf{v}_1, \mathbf{v}_2\}$ in \mathbb{R}^3 is a plane:

The vector \mathbf{x} belongs to the **subspace** <u>iff</u> it can be expressed as a linear combination of \mathbf{v}_1 , \mathbf{v}_2 , that is, if \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{x} are linearly dependent or:

$$|A| = 2 \cdot 1 \cdot y = 0$$

$$3 \cdot 5 \cdot z \cdot \Rightarrow |A| = 7x + y - 3z = 0$$

Dimension

Theorem

Let V be a vector space with abasis

$$B = \{ \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \}$$

of n vectors. Then any set of n + 1 vectors is linearly dependent.

Proof:

Omitted (choose an arbitrary set of n + 1 vectors in V and show that since any of them is spanned by the basis then the set must be linearly dependent.)

It follows that:

Theorem

Let a **vector space** *V* have a finite basis consisting of *r* vectors. Then any basis of *V* consists of exactly *r* vectors.

Definition (Dimension)

The number of k vectors in a finite basis of a **vector space** V is the dimension of denoted by dim(V).

V andis

The **vector space** $V = \{0\}$ is defined to have dimension 0.

- a plane in R² is a two-dimensional **subspace**
- a line in Rⁿ is a one-dimensional **subspace**
- a hyperplane in Rⁿ is an (n − 1)-dimensional subspace of Rⁿ
- the vector space F of real functions is an infinite-dimensional vector space
- the vector space of real-valued sequences is an infinite-dimensional vector space.

Dimension and bases of Subspaces

Example

The plane Win R³

$$W = \{ \mathbf{x} \mid x + y - 3z = 0 \}$$

has a basis consisting of the vectors $\mathbf{v}_1 = [1, 2, 1]^T$ and $\mathbf{v}_2 = [3, 0, 1]^T$.

Let \mathbf{v}_3 be any vector $f \in \mathcal{W}$, eg, $\mathbf{v}_3 = [1, 0, 0]^T$. Then the set $S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a basis of \mathbb{R}^3 .

Basis of a Linear Space

If we are given k vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ in \mathbb{R}^n , how can we find a basis for Lin $(\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\})$?

We can:

 create an n × k matrix (vectors as columns) and find a basis for the column space by putting the matrix in reduced row echelon form

Definition (Rank and nullity)

Therankof a matrix A is

$$\operatorname{rank}(A) = \dim(R(A))$$

Thenullityof a matrix A is

$$nullity(A) = dim(N(A))$$

Although subspaces of possibly different Euclidean

spaces: Theorem

If A is an $m \times n$ matrix, then

$$\dim(RS(A)) = \dim(CS(A)) = \operatorname{rank}(A)$$

Theorem (Rank-nullity theorem)

For an $m \times n$ matrix A

$$rank(A) + nullity(A) = n$$

 $(\dim(R(A)) + \dim(N(A)) = n)$

Summary

- · Linear dependence and independence
- Determine linear dependency of a set of vectors, ie, find non-trivial lin. combination that equal zero
- Basis
- · Find a basis for a linear space
- Dimension (finite, infinite)