
Vector Spaces 
Linear Independence, Bases and Dimension 
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Premise 

• We move to a higher level of abstraction 

• A vector space is a set with anadditionandscalar multiplicationthat behave 

appropriately,  that is, like Rn 

 

• Imagine a vector space as a class of a generic type (template) in object oriented 

programming,  equipped with two operations. 



Vector Spaces 

Definition (Vector Space) 

A (real)vector space V is a non-empty set equipped with anadditionand ascalar 

multiplication  operation such that for all α, β ∈ R and all u, v, w ∈ V : 

1. u + v ∈ V (closure under addition) 

2. u + v = v + u (commutative law for addition) 

3. u + (v + w) = (u + v) + w (associative law for addition) 

4. there is a single member 0 of V , called thezero vector, such that for all v ∈ V , v + 0 = v 
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5. for every v ∈ V there is an element w ∈ V , written −v, called thenegativeof v, such that 

v + w = 0 

6. αv ∈ V (closure under scalar multiplication) 

7. α(u + v) = αu + αv (distributive law) 

8. (α + β)v = αv + βv (distributive law) 

9. α(βv) = (αβ)v (associative law for vector multiplication) 

10. 1v = v 



• What is −f ? and the zero vector? 
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Examples 

• set Rn 

• but the set of objects for which the vector space defined is valid are more than the vectors 

in 

Rn . 
 

• set of all functions F : R →  R.  

We can define an addition f + g : 

(f + g )(x ) = f (x ) + g (x ) 

and a scalar multiplication αf : 

(αf )(x ) = αf (x ) 

 
• Example: x + x 2 and2 x . They can represent the result of the two operations. 
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The axioms given are minimum number 

needed.  Other properties can be derived: 

For example: 

(−1)x = −x 

Proof: 

0 = 0x = (1 + (−1))x = 1x + (−1)x = x + (−1)x 

Adding −x on both sides: 

− x = − x + 0 = −x + x + (−1)x = (−1)x 

which proves that −x = (−1)x.  

Try the same with −f . 



0 
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Examples 

• V = {0} 

• the set of all m × n matrices 

• the set of all infinite sequences of real numbers, y = {y1, y2, . . . , yn, . . . , }, yi ∈ R. 

(y = {yn}, n ≥ 1) 

– addition of y = {y1, y2, . . . , yn, . . . , } and z = {z1, z2, . . . , zn, . . . , } then: 

y + z = {y1 + z1, y2 + z2, . . . , yn + zn, . . . , } 

– multiplication by a scalar α ∈ R: 

αy = {αy1, αy2, . . . , αyn, . . . , } 

• set of all vectors in R3 with the third entry equal to 0 (verify closure): 

          x 
 

 

 
  .  

.  
W = y x, y ∈ R 

 



Linear Combinations 

Definition (Linear Combination) 

For vectors v1, v2, . . . , vk in a vector space V , the vector 

v = α1v1 + α2v2 + . . . + αk vk 

is called alinear combinationof the vectors v1, v2, . . . , vk 

.  The scalars αi are calledcoefficients. 
 

• To find the coefficients that given a set of vertices express by linear combination a 

given  vector, we solve a system of linear equations. 

• If F is the vector space of functions from R to R then the function f : x ›→ 2x 2 + 3x + 4can  

be expressed as a linear combination of: 

g : x ›→ x 2, h : x ›→ x , k : x ›→ 1that is: 

f = 2g + 3h + 4k 

• Given two vectors v1 and v2, is it possible to represent any point in the Cartesian plane? 
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Subspaces 

Definition (Subspace) 

Asubspace W of a vector space V is a non-empty subset of V that is itself a vector space 

under  the same operations of addition and scalar multiplication as V . 

 

Theorem 

Let V be a vector space. Then a non-empty subset W of V is a subspace if and only if both 

the  following hold: 

• for all u, v ∈ W , u + v ∈ W 

(W is closed under addition) 

• for all v ∈ W and α ∈ R, αv ∈ W 

(W is closed under scalar multiplication) 

ie, all other axioms can be derived to hold true 
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Example 

• The set of all vectors in R3 with the third entry equal to 0. 

• The set {0} is not empty, it is a subspace since 0 + 0 = 0 and α0 = 0 for any α ∈ R. 

Example 

In R2, the lines y = 2x and y = 2x + 1can be defined as the sets of vectors: 
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S = 
x 

y 

.  Σ  Σ Σ  
y = 2x, x ∈ R U = 

.  
x 

y 

.  Σ Σ 
y = 2x + 1, x ∈ R 

.  

Σ  

S = {x | x = tv, t ∈ R} U = {x | x = p + tv, t ∈ R} 

2 
v = 

1 
, p = 

0 

1 

Σ  Σ Σ Σ 



Example (cntd) 

1. The set S is non-empty, since 0 = 0v ∈ S . 

2. closure under addition: 
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1 1 

2 2 

Σ  Σ Σ Σ 

u = s ∈ S, w = t ∈ S, for some s, t ∈ R 

u + w = sv + tv = (s + t)v ∈ S since s + t ∈ R 

3. closure under scalar multiplication: 

1 

2 

Σ Σ 

u = s ∈ S for some s ∈ R, α ∈ R 

αu = α(s(v)) = (αs)v ∈ S since αs ∈ R 

Note that: 

• u, w and α ∈ R must bearbitrary 
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Note that: 

• proving just one of the above couterexamples is enough to show that U is not a 

subspace 

• it is sufficient to make them fail for particular choices 

• a good place to start is checking whether 0 ∈ S . If not then S is not a subspace 



Theorem 

A non-empty subset W of a vector space is a subspace if and only if for all u, v ∈ W and 

all 

α, β ∈ R, we have αu + βv ∈ W . 

That is, W isclosed under linear combination. 
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Geometric 

interpretation: 

u 

w 

(0, 0) 
x 

y 

u 

w 
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(0, 0) 
x 

y 

~  The line y = 2x + 1is anaffine subset, a „translation“ of a 

subspace 



Null space of a Matrix is a Subspace 

Theorem 

For any m × n matrix A, N(A), ie, the solutions of Ax = 0, is a subspace of Rn 

Proof 

1.  A0 = 0 =⇒ 0 ∈ N(A) 

2. Suppose u, v ∈ N(A), then u + v ∈ N(A):  

A(u + v) = Au + Av = 0 + 0 = 0 

3. Suppose u ∈ N(A) and α ∈ R, then αu ∈ N(A):  

A(αu) = A(αu) = αAu = α0 = 0 

The set of solutions S to a general system Ax = b 

isnota 19 

subspace of Rn because 0 ƒ∈ 
S 



Affine subsets 

Definition (Affine subset) 

If W is a subspace of a vector space V and x ∈ V , then the set x + W defined by 

x + W = {x + w | w ∈ W } 

is said to be anaffine subsetof V . 

The set of solutions S to a general system Ax = b is an affine subspace, indeed recall that if x0 

is  any solution of the system 

S = {x0 + z | z ∈ N(A)} 
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Range of a Matrix is a Subspace 

Theorem 

For any m × n matrix A, R(A) = {Ax | x ∈ Rn} is a subspace of Rm 

Proof 

1.  A0 = 0 =⇒ 0 ∈ R(A) 

2. Suppose u, v ∈ R(A), then u + v ∈ R(A): 

... 
 

3. Suppose u ∈ R(A) and α ∈ R, then αu ∈ R(A): 

... 
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Linear Span 

• If v = α1v1 + α2v2 + . . . + αk vk and w = β1v1 + β2v2 + . . . + βk vk , 

then v + w and sv, s ∈ R are also linear combinations of the vectors v1, v2, . . . , vk . 

• The set of all linear combinations of a given set of vectors of a vector space V forms a 

subspace: 

Definition (Linear span) 

Let V be a vector space and v1, v2, . . . , vk ∈ V . Thelinear spanof X = {v1, v2, . . . , vk } is the set  

of all linear combinations of the vectors v1, v2, . . . , vk , denoted byLin (X ), that is: 

Lin({v1, v2, . . . , vk }) = {α1v1 + α2v2 + . . . + αk vk | α1, α2, . . . , αk ∈ R} 

 
Theorem 

If X = {v1, v2, . . . , vk } is a set of vectors of avector space V , then Lin(X ) is a subspace of V and  

is also called the subspace spanned by X. 

It is the smallest subspace containing the vectors v1, v2, . . . , vk . 
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Example 

• Lin({v}) = {αv | α ∈ R} defines a line in Rn . 

• Recall that a plane in R3 has two equivalent 

representations: 
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x = p + sv + tw, s, t ∈ R ax + by + cz = d and 

where v and w are non 

parallel. 

–If d = 0and p = 0, then 
{x | x = sv + tw, s, t, ∈ R} = Lin({v, w}) 

and hence a subspace of Rn . 

–If d ƒ= 0, then the plane is not a subspace. It is anaffine subset, a translation of a subspace.  

(recall that one can also show directly that a subset is a subspace or not) 



Spanning Sets of a Matrix 

Definition (Column space) 

If A is an m × n matrix, and if a1, a2, . . . , ak denote the columns of A, then thecolumn 

spaceor  rangeof A is 

CS (A) = R(A) = Lin({a1, a2, . . . , ak }) 

and is a subspace of Rm 

.  Definition (Row space) 

If A is an m × n matrix, and if −a→1, 
−a→2, . . . , 

−a→k denote the rows of A, then therow spaceof A is 

RS (A) = Lin({→−a 1, 
→−a 2, . . . , 

→−a k }) 

and is a subspace of Rn . 

 

• If A is an m × n matrix, then for any r ∈ RS (A) and any x ∈ N(A), (r, x) = 0; that is, r and x 

areorthogonal,  RS (A) ⊥ N(A). (hint: look at Ax = 0) 
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Summary 

We have seen: 

• Definition of vector space and subspace 

• Linear combinations as the main way to work with vector 

spaces 

• Proofs that a given set is a vector space 

• Proofs that a given subset of a vector space is a subspace or 

not 

• Definition of linear span of set of vectors 

• Definition of row and column spaces of a matrix 

CS (A) = R(A) and RS (A) ⊥ N(A) 



Linear Independence 

Definition (Linear Independence) 

Let V be a vector space and v1, v2, . . . , vk ∈ V . Then v1, v2, . . . , vk arelinearly 

independent(or  form alinearly independent set) if and only if the vector equation 

α1v1 + α2v2 + · · · + αk vk = 0 

has the unique solution 

α1 = α2 = · · · = αk = 0 

 
Definition (Linear Dependence) 

Let V be a vector space and v1, v2, . . . , vk ∈ V . Then v1, v2, . . . , vk arelinearly 

dependent(or  form alinearly dependent set) if and only if there are real numbers α1, α2, · · · 
, αk , not all zero,  such that 

α1v1 + α2v2 + · · · + αk vk = 0 
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Example 

In R2, the vectors 

29 

v = 
1 

2 

Σ Σ 

and w = 
1 

−1 

Σ Σ 

are linearly independent. 

Indeed: 

α + β 
1 1 0 

2 −1 0 

Σ  Σ Σ Σ Σ Σ 

= =⇒  

.  
α + β = 0  

2α − β = 0 

The homogeneous linear system has only the trivial solution, α = 0, β = 

0,  so linear independence. 
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3 

v = 2 , 2 

5 

     

 
v = 1 , 3 v  = 5 
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Example 

In R3, the following vectors are linearly 

dependent: 

1
 

2
  

4 
 

  

Indeed:2 v1 + v2 + v3 = 0 



Theorem 

The set {v1, v2, . . . , vk } ⊆ V is linearly dependent if and only if at least one vector vi is a 

linear  combination of the other vectors. 

Proof 

=⇒ 

If {v1, v2, . . . , vk } are linearly dependent then 

α1v1 + α2v2 + · · · + αk vk = 0 

has a solution with some αi ƒ= 0, then: 

i 1 
α α 1 2 α i− 1 

v  = − v  − v  − · · · − v 2 i− 1 
α i +1 

αi αi αi αi 
i +1 

α k 

αi 

− v + · · · − v k 

which is a linear combination of the other 

vectors 

⇐= 

If vi is a lin combination of the other vectors, eg, 

then 

vi = β1v1 + · · · + βi−1v i−1 + βi +1vi +1 + · · · + βk vk 

 
β1v1 + · · · + βi−1v i−1 − vi + βi +1vi +1 + · · · + βk vk = 0 



Corollary 

Two vectors are linearly dependent if and only if at least one vector is a scalar multiple of the 

other. 

 
Example 

1 
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3 

1
 
 

 
v = 2 , 2 v = 1 

5 

2
 
 

 

are linearly 

independent 



Theorem 

In a vector space V , a non-empty set of vectors that contains the zero vector is linearly 

dependent. 

Proof: 

 
{v1, v2, . . . , vk } ⊂ V 

 
{v1, v2, . . . , vk , 0} 
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0v1 + 0v2 + . . . + 0vk + a0 = 0, a ƒ= 0 



Uniqueness of linear combinations 

Theorem 

If v1, v2, . . . , vk are linearly independent vectors in V and if 

a1v1 + a2v2 + . . . + ak vk = b1v1 + b2v2 + . . . + bk vk 

then 

a1 = b1, a2 = b2, . . . ak = bk . 

 
 

• If a vector x can be expressed as a linear combination of linearly independent vectors, then 

this  can be done in only one way 

x = c1v1 + c2v2 + . . . + ck vk 

34 



n Testing for Linear Independence in R 

For k vectors v1, v2, . . . , vk ∈ Rn 

α1v1 + α2v2 + · · · + αk vk 

is equivalent to 

Ax 

where A is the n × k matrix whose columns are the vectors v1, v2, . . . , vk and x = [α1, α2, . . . , αk ]T : 

Theorem 

The vectors v1, v2, . . . , vk in Rn arelinearly dependent if and only if the linear system Ax = 

0,  where A is the matrix A = [v1 v2 · · · vk ], has a solution other than x = 0. 

Equivalently, the vectors arelinearly independentprecisely when the only solution to the system is 

x = 0. 

If vectors are linearly dependent, then any solution x ƒ= 0, x = [α1, α2. . . . , αk ]T of Ax = 0 gives a  

non-trivial linear combination Ax = α1v1 + α2v2 + . . . + αk vk = 0 
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Recall that Ax = 0 has precisely one solution x = 0 iff the n × k matrix is row equiv. to a row  

echelon matrix with k leading ones, ie, iff rank(A) = k 

Theorem 

Let v1, v2, . . . , vk ∈ Rn. The set {v1, v2, . . . , vk } islinearly independentiff the n × k matrix 

A = [v1 v2 . . . vk ] has rank k. 

 
Theorem 

The maximum size of a linearly independent set of vectors in Rn is n. 

 
• rank(A) ≤ min{n, k}, hencerank (A) ≤ n ⇒  when lin. indep. k ≤ n. 

• we exhibit an example that has exactly n independent vectors in Rn (there are 
infinite  examples): 

1
 

0
 

0
 

e = 1 . 
. 

  
  
  

0 1 
, e2 = . 

. 

  

  
, . . . , e = 

  

0 
n . 

. 

1 

  
  
  

0 0 

This is known as thestandard basisof Rn . 



Exampl

e 

L1 = 

38 

  

  

 

 
 

1 

0 

−1 
,  
 

 

 
9 

, , , 

1 2 0 2 

2 1 0 5 

3 1 9 

2 1 0 1 

        

 
      

 
      

 

 

  

lin. dep. since 5 > n = 4 

L2 = 

  

  

 

 
 

0 

1 

0 

−1 
, 

 

 
 

 
 

 

1 

2 

9 

2 

 

 
 

 

  

lin. indep. 

L3 = 

  

  

 

 
 

0 

1 

0 

−1 
, 
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, 

1 2 

2 1 

3 

2 1 

  

 
  

 
  

 

 

  

lin. dep. since rank(A) = 2 

L4 = 

  

  

 

 
 

0 

1 

0 

−1 

0 

, 

 

 
 

 
 

 
9 

, , 

1 2 0 

2 1 0 

3 1 

2 1 0 

    

 
    

 
    

 

 

  

lin. dep. since L3 ⊆ L4 



Linear Independence and Span in R n 

Let S = {v1, v2, . . . , vk } be a set of vectors in Rn . 
What are the conditions for S to span Rn and be linearly 

independent?  Let A be the n × k matrix whose columns are the 

vectors from S . 
• S spans Rn if for any v ∈ Rn the linear system Ax = v is consistent for all v ∈ Rn . This 

happens whenrank (A) = n, hence k ≥ n 

• S is linearly independent iff the linear system Ax = 0 has a unique solution. This 

happens  whenrank (A) = k, Hence k ≤ n 

Hence, to span Rn and to be linearly independent, the set S must have exactly n vectors and 

the  square matrix A must havedet (A) ƒ= 0 

Example 

3 

40 

1 2 

5 
3 v = 2 , v =  1 , v = 5 

1 
1

 
2

 
4

 

         

 3 5 1 

1 2 4 
.  .  
.  .  
.  .  

|A| = 2 1 5 = 30 = ƒ 0 



Bases 

Definition (Basis) 

V if: Let V be a vector space. Then the subset B = {v1, v2, . . . , vn} of V is said to be abasisfor 

1. B is a linearly independent set of vectors, and 

2. B spans V ; that is, V = Lin(B) 

Theorem 

If V is a vector space, then a smallest spanning set is a basis of V . 

 
Theorem 

B = {v1, v2, . . . , vn} is a basis of V if and only if any v ∈ V is auniquelinear combination of 

v1, v2, . . . , vn 
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x = x 1 . 
. 

 

 
  
 

 

+ x 2 

0 1 
. 
. 

0 0 

 

  

 

+ . . . + x 
  n 

0 
. 
. 

1 

Example 

{e1, e2, . . . , en} is thestandard basisof Rn . 

the vectors are linearly independent and for any x = [x1, x2, . . . , xn ]T ∈ Rn , 

x = x1e1 + x2e2 + . . . + xn en , ie, 

1
 

0
 

0
 

 

 
  
 

 

Example 

The set below is a basis of 

R2: 

S = , 
1 1 

2 −1 

. Σ   Σ  Σ ΣΣ 

• any vector b ∈ R2 is a linear combination of the two vectors in S 

~  Ax = b is consistent for any b. 

• S spans R2 and is linearly 

independent 



Example 

Find a basis of the subspace of R3 given 

by 

44 

 

 

x 

z 

  .  
.  
.  

W = y x + y − 3 

    

 

  
z = 0 . 

x 
  

    
x 

x =  y = −x + 3z 

   
1 

 
0

 
    

 
= x −1 + z 3 = x v + z w, ∀x, z ∈ R 

z z 0 1 

The set {v, w} spans W . The set is also 

independent: 

αv + βw = 0 =⇒ α = 0, β = 0 



Coordinates 

α 

45 

2 

. 

. 

αn 

Definition (Coordinates) 

If S = {v1, v2, . . . , vn} is a basis of a vector space V , then any vector v ∈ V can be expressed  

uniquelyas v = α1v1 + α2v2 + . . . + αn vn then the real numbers α1, α2, . . . , αn are thecoordinates  

of v with respect to the basis S . 

We use the notation 

α1
 

 

 

[v]S = 
  

 

 
S 

to denote the coordinate vector of v in the basis S . 

 
• We assume the order of the vectors in the basis to be fixed: aka,ordered basis 

• Note that [v]S is a vector in Rn :Coordinate mappingcreates a one-to-one 

correspondence  between ageneral vector space V and the fmailiar vector space Rn . 



Example 

Consider the two basis of 

R2: 

46 

B = , 
1 0 

0 1 

. Σ  Σ Σ ΣΣ 

B [v] = 
2 

Σ Σ 

S = , 
1 1 

2 −1 

. Σ   Σ  Σ ΣΣ 

S [v] = 
−1 

−5 B 3 

Σ Σ 

S 

In the standard basis the coordinates of v are precisely the components of the 

vector v.  In the basis S , they are such that 

2 
v = −1 + 3 = 

1 1 2 

−1 −5 

Σ  Σ Σ Σ Σ Σ 



Extension of the main theorem 

Theorem 

If A is an n × n matrix, then the following statements are equivalent: 

1. A is invertible 

2. Ax = b has a unique solution for any b ∈ R 

3. Ax = 0 has only the trivial solution, x = 0 

4. the reduced row echelon form of A is I . 

5. |A| =ƒ 0 

6. The rank of A is n 

7. The column vectors of A are a basis of Rn 

8. The rows of A (written as vectors) are a basis of Rn 

 
(The last statement derives from |AT | = |A|.) 

Hence, simply calculating the determinant can inform on all the above 

facts. 
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Exampl

e 
1
 

1 2 

2
 

3 v  =   2  , v  =   1  , v  = 5 

 
4 

 

          

1 2 x =  y = sv + tv = s  2  + t 1 

3 5 11 

This set is linearly dependent since v3 = 2v1 + v2 

so v3 ∈ Lin({v1, v2}) andLin ({v1, v2}) = Lin({v1, v2, v3}).  

The linear span of {v1, v2} in R3 is a plane: 

x 
 

1
 

2
 

         

 

3 5 z 

z 3 5 

 

The vector x belongs to the subspace iff it can be expressed as a linear combination of v1, v2, 

that  is, if v1, v2, x are linearly dependent or: 

1 2 x 
.  .  

.  .  

.  .  
|A| = 2 1 y = 0 =⇒  |A| = 7x + y − 3z = 0 



Dimension 
Theorem 

Let V be a vector space with a basis 

B = {v1, v2, . . . , vn} 

of n vectors. Then any set of n + 1 vectors is linearly dependent. 

Proof: 

Omitted (choose an arbitrary set of n + 1vectors in V and show that since any of them is 

spanned  by the basis then the set must be linearly dependent.) 

49 



It follows that:  

Theorem 

Let a vector space V have a finite basis consisting of r vectors. Then any basis of V consists 

of  exactly r vectors. 
 

Definition (Dimension) 

V and is 

51 

The number of k vectors in a finite basis of a vector space V is 

thedimensionof  denoted bydim (V ). 

The vector space V = {0} is defined to have dimension 0. 

• a plane in R2 is a two-dimensional subspace 

• a line in Rn is a one-dimensional subspace 

• a hyperplane in Rn is an (n − 1)-dimensional subspace of Rn 

• the vector space F of real functions is an infinite-dimensional vector space 

• the vector space of real-valued sequences is an infinite-dimensional vector 

space. 



Dimension and bases of Subspaces 

Example 

The plane W in R3 

W = {x | x + y − 3z = 0} 

has a basis consisting of the vectors v1 = [1, 2, 1]T and v2 = [3, 0, 1]T . 
 

Let v3 be any vector ƒ∈ W , eg, v3 = [1, 0, 0]T . Then the set S = {v1, v2, v3} is a basis of R3. 
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Basis of a Linear Space 

If we are given k vectors v1, v2, . . . , vk in Rn , how can we find a basis forLin ({v1, v2, . . . , vk })? 

We can: 
 

• create an n × k matrix (vectors as columns) and find a basis for the column space by 

putting  the matrix in reduced row echelon form 



Definition (Rank and nullity)  

Therankof a matrix A is Thenullityof a matrix A is 

rank(A) = dim(R(A)) nullity(A) = dim(N(A)) 

Although subspaces of possibly different Euclidean 

spaces:  Theorem 

If A is an m × n matrix, then 

dim(RS (A)) = dim(CS (A)) = rank(A) 

 
Theorem (Rank-nullity theorem) 

For an m × n matrix A 

rank(A) + nullity(A) = n 
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(dim(R(A)) + dim(N(A)) = n) 
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Summary 

• Linear dependence and independence 

• Determine linear dependency of a set of vectors, ie, find non-trivial lin. combination that 

equal  zero 
 

• Basis 

• Find a basis for a linear space 

• Dimension (finite, infinite) 


